Cluster production in AMD model

Akira Ono

Department of Physics, Tohoku University

The 2017 ICNT Program at FRIB: Extracting Bulk Properties of Neutron-Rich Matter with Transport Models in Bayesian Perspective, FRIB-MSU, East Lansing, Michigan, USA March 22 - April 12, 2017

Clustering phenomena in excited states of nuclear systems

 $E^* \sim 80 A$ MeV Gas of clusters at higher energies

Kanada-En'yo, Kimura, Ono, Prog. Theor. Exp. Phys. 2012 01A202 (2012)

Importance of clusters in heavy-ion collisions

FOPI data, Reisdorf et al., NPA 848 (2010) 366.

Light-cluster correlations may be important at relatively early times.

Akira Ono (Department of Physics, Tohoku University)

Cluster production in AMD model

Antisymmetrized Molecular Dynamics (very basic version)

AMD wave function

|₫

$$\Phi(Z)\rangle = \frac{\det}{ij} \Big[\exp \Big\{ -\nu \Big(\mathbf{r}_j - \frac{\mathbf{Z}_i}{\sqrt{\nu}} \Big)^2 \Big\} \chi_{\alpha_i}(j) \Big]$$

$$\mathbf{Z}_{i} = \sqrt{v}\mathbf{D}_{i} + \frac{i}{2\hbar\sqrt{v}}\mathbf{K}_{i}$$

$$v: \text{Width parameter} = (2.5 \text{ fm})^{-2}$$

$$\chi_{\alpha_{i}}: \text{Spin-isospin states} = p \uparrow, p \downarrow, n \uparrow, n$$

Equation of motion for the wave packet centroids Z

$$\frac{d}{dt}\mathbf{Z}_{i} = \{\mathbf{Z}_{i}, \mathcal{H}\}_{\mathsf{PB}} + (\mathsf{NN \ collisions})$$

$\{\mathbf{Z}_i,\mathcal{H}\}_{PB}$: Motion in the mean field	NN collisions
$\mathcal{H} = \frac{\langle \Phi(Z) H \Phi(Z) \rangle}{\langle \Phi(Z) \Phi(Z) \rangle} + (\text{c.m. correction})$ H: Effective interaction (e.g. Skyrme force)	$W_{i \to f} = \frac{2\pi}{\hbar} \langle \Psi_f V \Psi_i \rangle ^2 \delta(E_f - E_i)$ • $ V ^2$ or σ_{NN} (in medium) • Pauli blocking
	Ono, Horiuchi et al., Prog. Theor. Phys. 87 (1992) 1185.

Wigner function for the AMD wave function

$$\begin{split} f_{\alpha}(\mathbf{r},\mathbf{p}) &= 8 \sum_{i \in \alpha} \sum_{j \in \alpha} e^{-2\nu(\mathbf{r}-\mathbf{R}_{ij})^2} e^{-(\mathbf{p}-\mathbf{P}_{ij})^2/2\hbar^2 \nu} B_{ij} B_{ji}^{-1}, \qquad \alpha = p \uparrow, p \downarrow, n \uparrow, n \downarrow \\ \mathbf{R}_{ij} &= \frac{1}{2\sqrt{\nu}} (\mathbf{Z}_i^* + \mathbf{Z}_j), \quad \mathbf{P}_{ij} = i\hbar\sqrt{\nu} (\mathbf{Z}_i^* - \mathbf{Z}_j), \quad B_{ij} = e^{-\frac{1}{2}(\mathbf{Z}_i^* - \mathbf{Z}_j)^2} \end{split}$$

Equation of motion for the wave packet centroids Z

$$\frac{d}{dt}\mathbf{Z}_{i} = \{\mathbf{Z}_{i}, \mathcal{H}\}_{\mathsf{PB}} + (\mathsf{NN \ collisions})$$

$\{\mathbf{Z}_i, \mathcal{H}\}_{PB}$: Motion in the mean field	NN collisions
$\mathcal{H} = \frac{\langle \Phi(Z) H \Phi(Z) \rangle}{\langle \Phi(Z) \Phi(Z) \rangle} + (\text{c.m. correction})$ H: Effective interaction (e.g. Skyrme force)	$W_{i \to f} = \frac{2\pi}{\hbar} \langle \Psi_f V \Psi_i \rangle ^2 \delta(E_f - E_i)$ • $ V ^2$ or σ_{NN} (in medium) • Pauli blocking
	Ono, Horiuchi et al., Prog. Theor, Phys. 87 (1992) 1185.

Skyrme force

$$\begin{aligned} \nu_{ij} &= t_0 (1 + x_0 P_\sigma) \delta(\mathbf{r}) + \frac{1}{2} t_1 (1 + x_1 P_\sigma) [\delta(\mathbf{r}) \mathbf{k}^2 + \mathbf{k}^2 \delta(\mathbf{r})] & \mathbf{r} = \mathbf{r}_i - \mathbf{r}_j \\ &+ t_2 (1 + x_2 P_\sigma) \mathbf{k} \cdot \delta(\mathbf{r}) \mathbf{k} + t_3 (1 + x_3 P_\sigma) [\rho(\mathbf{r}_i)]^\alpha \delta(\mathbf{r}) & \mathbf{k} = \frac{1}{2\hbar} (\mathbf{p}_i - \mathbf{p}_j) \end{aligned}$$

Spacial integration of the potential energy density which is a function of several kind of densities.

$$\langle V \rangle = \int \mathcal{V}(\rho(\mathbf{r}), \tau(\mathbf{r}), \Delta \rho(\mathbf{r}), \mathbf{j}(\mathbf{r})) d\mathbf{r} \qquad \sim A^2 \times \text{Volume}$$

$$\begin{split} \rho_{\alpha}(\mathbf{r}) &= \int f_{\alpha}(\mathbf{r}, \mathbf{p}) \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} = \left(\frac{2\nu}{\pi}\right)^{\frac{3}{2}} \sum_{i \in \alpha} \sum_{j \in \alpha} e^{-2\nu(\mathbf{r}-\mathbf{R}_{ij})^{2}} B_{ij} B_{ji}^{-1}, \qquad \mathbf{R}_{ij} = \frac{1}{2\sqrt{\nu}} (\mathbf{Z}_{i}^{*} + \mathbf{Z}_{j}) \\ \mathbf{j}_{\alpha}(\mathbf{r}) &= \int \frac{\mathbf{p}}{M} f_{\alpha}(\mathbf{r}, \mathbf{p}) \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} = \left(\frac{2\nu}{\pi}\right)^{\frac{3}{2}} \sum_{i \in \alpha} \sum_{j \in \alpha} \frac{\mathbf{P}_{ij}}{M} e^{-2\nu(\mathbf{r}-\mathbf{R}_{ij})^{2}} B_{ij} B_{ji}^{-1}, \qquad \mathbf{P}_{ij} = i\hbar\sqrt{\nu} (\mathbf{Z}_{i}^{*} - \mathbf{Z}_{j}) \\ \tau_{\alpha}(\mathbf{r}) &= \int \frac{\mathbf{p}^{2}}{M^{2}} f_{\alpha}(\mathbf{r}, \mathbf{p}) \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} = \left(\frac{2\nu}{\pi}\right)^{\frac{3}{2}} \sum_{i \in \alpha} \sum_{j \in \alpha} \frac{\mathbf{P}_{ij}^{2} + 3\hbar^{2}\nu}{M^{2}} e^{-2\nu(\mathbf{r}-\mathbf{R}_{ij})^{2}} B_{ij} B_{ji}^{-1} \end{split}$$

AMD with usual NN collisions (very basic version)

Partitioning of protons			
(experimental data)			
	Xe + Sn	Au + Au	
	50 MeV/u	250 MeV/u	
р	≈10%	21%	
α	≈20%	20%	
d, t, ³ He	≈10%	40%	
A > 4	≈60%	18%	

INDRA data, Hudan et al., PRC67 (2003) 064613. FOPI data, Reisdorf et al., NPA 848 (2010) 366.

Two directions of extension of AMD

Wave-packet splitting: Give fluctuation to each wave packet centroid, based on the **single-particle motion**.

$$\frac{d}{dt}Z = \{Z, \mathcal{H}\}_{\mathsf{PB}} + (\mathsf{NN Collision})$$

+ (W.P. Splitting) + (E. Conservation)

Ono, Hudan, Chibihi, Frankland, PRC66 (2002) 014603

Ono and Horiuchi, PPNP53 (2004) 501

At each two-nucleon collision, **cluster formation** is considered for the final state.

$$N_1 + B_1 + N_2 + B_2 \rightarrow C_1 + C_2$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \mathsf{CC} | V_{NN} | \mathsf{NBNB} \rangle|^2 \delta(\mathcal{H} - E)$$

Ono, J. Phys. Conf. Ser. 420 (2013) 012103

Ikeno, Ono et al., PRC 93 (2016) 044612

Akira Ono (Department of Physics, Tohoku University)

Cluster production in AMD model

Interacting and reacting clusters in heavy-ion collisions

I want a transport model which can describe the dynamics for a sufficiently long time (e.g., $t \sim 1000 \text{ fm/}c$).

The decays of the excited fragments at the end of the dynamical calculation are calculated by a statistical decay code.

• $d + \alpha \leftrightarrow t + h$

 $\bigcirc d+t \leftrightarrow n+\alpha$

• $d + h \leftrightarrow p + \alpha$

• $d+t \leftrightarrow 2n+h$ • $d+h \leftrightarrow 2p+t$

A cluster in medium & Clusterized nuclear matter

Equation for a deuteron in uncorrelated medium

$$\begin{bmatrix} e(\frac{1}{2}\mathbf{P} + \mathbf{p}) + e(\frac{1}{2}\mathbf{P} - \mathbf{p}) \end{bmatrix} \tilde{\psi}(\mathbf{p})$$

+
$$\begin{bmatrix} 1 - f(\frac{1}{2}\mathbf{P} + \mathbf{p}) - f(\frac{1}{2}\mathbf{P} - \mathbf{p}) \end{bmatrix} \int \frac{d\mathbf{p}'}{(2\pi)^3} \langle \mathbf{p} | v | \mathbf{p}' \rangle \tilde{\psi}(\mathbf{p}')$$

=
$$E \tilde{\psi}(\mathbf{p})$$

Momentum (P) dependence of B.E. Röpke, NPA867 (2011) 66.

QS for symmetric nuclear matter Röpke, PRC 92 (2015) 054001.

Akira Ono (Department of Physics, Tohoku University)

A cluster put into a nucleus in AMD

10 α added to $^{124} \text{Sn}$ 5 0 $v_{z} = 0.0 c$ -5 ΔE_{α} [MeV] -10 -15 -20 -25 -30 2 6 8 10 y [fm]

 α cluster $|\alpha, \mathbf{Z}\rangle$: Four wave packets with different spins and isospins at the same phase space point \mathbf{Z} .

$$\begin{split} E_{\alpha} : & \mathscr{A} | \alpha, \mathbf{Z} \rangle |^{124} \mathsf{Sn} \rangle \\ E_{\mathsf{N}} : & \mathscr{A} | \mathbf{Z} \rangle |^{124} \mathsf{Sn} \rangle \quad (\mathsf{N} = p \uparrow, p \downarrow, n \uparrow, n \downarrow) \\ -B_{\alpha} = \Delta E_{\alpha} = E_{\alpha} - (E_{p\uparrow} + E_{p\downarrow} + E_{n\uparrow} + E_{n\downarrow}) \end{split}$$

(Energies are defined relative to $|^{124}$ Sn \rangle .)

$$\frac{\operatorname{Re} \mathbf{Z}}{\sqrt{v}} = (0, y, 0), \quad \frac{2\hbar\sqrt{v}\operatorname{Im} \mathbf{Z}}{M} = (0, 0, v_Z)$$

- Distance from the center: y
 ≈ Dependence on density
- Dendence on $P_{\alpha} = M_{\alpha} v_z$
- Due to the density dependence of the Skyrme force, the interaction between nucleons in the *α* cluster is weakened in the nucleus.

Energy is OK, but dynamics is ...

Akira Ono (Department of Physics, Tohoku University)

NN collisions without or with cluster correlations

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_f | V | \Psi_i \rangle|^2 \delta(E_f - E_i)$$

3

In the usual way of NN collision, only the two wave packets are changed.

$$\left\{ |\Psi_f\rangle \right\} = \left\{ |\varphi_{k_1}(1)\varphi_{k_2}(2)\Psi(3,4,\ldots)\rangle \right\}$$

(ignoring antisymmetrization for simplicity of presentation.)

Phase space or the density of states for two nucleon system

NN collisions without or with cluster correlations

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{i} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{i} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{i} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{i} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{i} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{i} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{i} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{i} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{i} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{i} - E_{i})$$

$$W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{i}$$

 \frown

Extension for cluster correlations

Include correlated states in the set of the final states of each NN collision.

$$\left\{ |\Psi_f\rangle \right\} \ni |\varphi_{k_1}(1)\psi_d(2,3)\Psi(4,\ldots)\rangle, \ \ldots$$

 $\langle K \rangle$

 $\langle V \rangle$

Érel

Similar to Danielewicz et al., NPA533 (1991) 712.

$$N_1 \xrightarrow{B_1} \varphi_1' \xrightarrow{\varphi_1'} C_1$$

$$N_2 \xrightarrow{P_2'} \varphi_2 \xrightarrow{\varphi_2'} C_2$$

$$B_2 \xrightarrow{\varphi_2'} \varphi_2'$$

$$\begin{split} \mathbf{p}_{\mathsf{rel}} &= \frac{1}{2} (\mathbf{p}_1 - \mathbf{p}_2) = p_{\mathsf{rel}} \hat{\mathbf{\Omega}} \\ \mathbf{q} &= \mathbf{p}_1 - \mathbf{p}_1^{(0)} = \mathbf{p}_2^{(0)} - \mathbf{p}_2 \\ \varphi_1^{+\mathbf{q}} &= \exp(+i\mathbf{q}\cdot\mathbf{r}_{\mathbf{N}_1})\varphi_1^{(0)} \\ \varphi_2^{-\mathbf{q}} &= \exp(-i\mathbf{q}\cdot\mathbf{r}_{\mathbf{N}_2})\varphi_2^{(0)} \end{split}$$

$N_1 + B_1 + N_2 + B_2 \rightarrow C_1 + C_2$

- N₁, N₂ : Colliding nucleons
- B₁, B₂ : Spectator nucleons/clusters
- C₁, C₂ : N, (2N), (3N), (4N) (up to α cluster)

Transition probability

$$W(\text{NBNB} \rightarrow \text{CC}) = \frac{2\pi}{\hbar} |\langle \text{CC} | V | \text{NBNB} \rangle|^2 \delta(E_f - E_i)$$

$$vd\sigma \propto |\langle \varphi_1'|\varphi_1^{+\mathbf{q}}\rangle|^2 |\langle \varphi_2'|\varphi_2^{-\mathbf{q}}\rangle|^2 |M|^2 \delta(E_f - E_i) p_{\mathsf{rel}}^2 dp_{\mathsf{rel}} d\Omega$$

 $|M|^2 = |\langle NN|V|NN \rangle|^2$: Matrix elements of NN scattering $\Leftarrow (d\sigma/d\Omega)_{NN}$ in medium (or in free space)

For each NN collision, cluster formation is considered.

$$\begin{split} & \mathsf{N}_1 + \mathsf{B}_1 \ + \ \mathsf{N}_2 + \mathsf{B}_2 \ \rightarrow \mathsf{C}_1 + \mathsf{C}_2 \\ & W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \mathsf{CC}| V_{NN} |\mathsf{NBNB}\rangle|^2 \delta(E_f - E_i) \end{split}$$

Ono, J. Phys. Conf. Ser. 420 (2013) 012103 Ikeno, Ono et al., PRC 93 (2016) 044612

- We always have a Slater determinant of nucleon wave packets. A cluster in the final states is represented by placing wave packets at the same phase space point.
- Consequently the processes such as $d + X \rightarrow n + p + X'$ and $d + X \rightarrow d + X'$ are automatically taken into account.

- No parameters have been introduced to adjust individual reactions. But the cluster formation may be artificially weakened (nnchange_gamma).
- There are many possibilities to from clusters in the final states.
 Non-orthogonality of the final states should be carefully handled.

Construction of Final States

Clusters (in the final states) are assumed to have $(0s)^N$ configuration.

Final states are not orthogonal: $N_{ij} \equiv \langle \Phi'_i | \Phi'_i \rangle \neq \delta_{ij}$

The probability of cluster formation with one of B's:

$$\hat{P} = \sum_{ij} |\Phi'_i\rangle N_{ij}^{-1} \langle \Phi'_j|, \qquad P = \langle \Phi^{\mathbf{q}} | \hat{P} | \Phi^{\mathbf{q}} \rangle \qquad \neq \sum_i |\langle \Phi'_i | \Phi^{\mathbf{q}} \rangle|^2$$

 $\begin{cases} P \Rightarrow \text{Choose one of the candidates and make a cluster.} \\ 1 - P \Rightarrow \text{Don't make a cluster (with any n1).} \end{cases}$

Akira Ono (Department of Physics, Tohoku University)

Cluster production in AMD model

decide to do a collision based on $(d\sigma/d\Omega)_{\rm NN}$

C = N

do for species in $p \uparrow$, $p \downarrow$, $n \uparrow$, $n \downarrow$ (in a random order)

- P = probability that C forms a cluster with a nucleon of species
 - taking care of the non-orthogonality

• taking care of the p_{rel} -dependence of the phase space factors and the overlap probabilities read() < p then

if rand() < P then

choose a nucleon B of species

C = C + B ! put the wave packets at the same phase space point

endif

enddo

Akira Ono (Department of Physics, Tohoku University)

Cluster production in AMD model

Correlations to bind several clusters

Clusters may form a loosely bound state.

e.g., ⁷Li = $\alpha + t - 2.5$ MeV Need more probability of $|\alpha + t\rangle \rightarrow |^{7}$ Li \rangle

- Step 1 Clusters (and nucleons) C_i and C_j are *linked*,
 - if C_i is one of the 3 clusters closest to C_j, and (i ↔ j),
 - and if the distance is 1 fm < $|\mathbf{R}_{ij}|$ < 7 fm,
 - and if they are slowly moving away, $\mathbf{P}_{ij}^2/2\mu_{ij} < 10 \text{ MeV}$ and $\mathbf{R}_{ij} \cdot \mathbf{P}_{ij} > 0$.
- **Step 2** Linked clusters (CC) are identified. Following steps are taken only for CC with mass number $6 \le A \le 9$ or $19 \le A \le 23$.
- Step 3 Transition of the internal state of CC by eliminating the (radial component of) internal momentum

 $\mathbf{P}_i \rightarrow \mathbf{0}$ for $i \in \mathbf{CC}$ in the c.m. of CC

with some care of the momentum conservation.

Next Energy conservation.

Correlations to bind several clusters

Clusters may form a loosely bound state.

e.g., ${}^{7}\text{Li} = \alpha + t - 2.5 \text{ MeV}$ Need more probability of $|\alpha + t\rangle \rightarrow |{}^{7}\text{Li}\rangle$

Step 4 Search a third particle for E-conservation

- A cluster C_k is selected, depending on the distance and momentum (|R_k| and |P_k|) relative to CC.
- If the selected *C_k* already belongs to a CC', this whole CC' is treated as the third particle for E-conservation.
- **Step 5** Scale the radial component of the relative momentum between CC and C_k for the total energy conservation.

$$\mathbf{P}_{k} = \mathbf{P}_{k\parallel} + \mathbf{P}_{k\perp} \rightarrow \beta \mathbf{P}_{k\parallel} + \mathbf{P}_{k\perp}$$

Each wave packet has a momentum width. E.g., it is an important part of the Fermi motion.

The momentum fluctuation Δp is given to a wave packet when it is '**emitted**', following Ono and Horiuchi, PRC53 (1996) 845 [a simple version of wp splitting].

- For a formed cluster, the momentum fluctuation is given to its center-of-mass motion.
- Total momentum and energy conservation.
- A particle is regarded as 'emitted' when there is no other particles around it in phase space within the radius (Δr, Δv) = (3.5 fm, 0.25c).
- Consistency with the method of the zero-point energy correction.

Results for multifragmentation in central collisions

Hudan et al., PRC 67 (2003) 064613. Reisdorf et al., NPA 848 (2010) 366. Hagel et al., PRC 50 (1994) 2017. Data:

Changes:

- Link two clusters only if at least one of them is *α*.
- Don't produce α clusters at high densities $\rho > \rho_0$.

Effect of cluster correlations: p + AI at 180 MeV

The result is sensitive to the inmedium two-nucleon cross sections.

 $\sigma_{\rm NN} = \sigma_0 \tanh(\sigma_{\rm free}/\sigma_0), \quad \sigma_0 = y \rho^{-2/3}, \quad y = 4. \qquad {\rm c.f. \ Coupland \ et \ al., \ PRC84(2011)054603}$

N/Z Ratio in ¹³²Sn + ¹²⁴Sn at 300 MeV/u (AMD with clusters)

Akira Ono (Department of Physics, Tohoku University)

N/Z Ratio in ¹³²Sn + ¹²⁴Sn at 300 MeV/u (AMD without clusters)

Akira Ono (Department of Physics, Tohoku University)

Ikeno's talk; Ikeno, Ono, Nara, Ohnishi, PRC 93 (2016) 044612

Recent developments of AMD

- Cluster correlations in the final states of NN collisions
- Binding of several clusters (production of Li, Be,...)
- Treatment of the wave-packet momentum width
- Test particles sampled from *f*(**r**, **p**) of AMD
 - Comparison with other models
 - Combining with another model (pion production)
 - Improvement of NN collision procedure